Stochastic subspace identification via “LQ decomposition”

نویسندگان

  • Hideyuki Tanaka
  • Tohru Katayama
چکیده

A new stochastic subspace identification algorithm is developed with the help of a stochastic realization on a finite interval. First, a finite-interval realization algorithm is rederived via “block-LDL decomposition” for a finite string of complete covariance sequence. Next, a stochastic subspace identification method is derived by adapting the finiteinterval realization algorithm to incomplete covariance matrices defined by a finite time-series data. The proposed subspace identification method always works, and computes a stochastic model from the “block-LQ decomposition” without solving any Riccati equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Subspace Identification Guaranteeing Stability and Minimum Phase

This paper presents a stochastic subspace identification algorithm to compute stable, minimum phase models from a stationary time-series data. The algorithm is based on spectral factorization techniques and a stochastic subspace identification method via a block LQ decomposition (Tanaka and Katayama, 2003c). Two Riccati equations are solved to ensure both stability and minimum phase property of...

متن کامل

Stochastic Realization on a Finite Interval via “lq Decomposition” in Hilbert Space

In this paper, we consider a stochastic realization problem with finite covariance data based on “LQ decomposition” in a Hilbert space, and re-derive a non-stationary finite-interval realization ([4, 5]). We develop a new algorithm of computing system matrices of the finiteinterval realization by LQ decomposition, followed by the SVD of a certain block matrix. Also, a stochastic subspace identi...

متن کامل

Subspace Identification of Closed Loop Systems by Stochastic Realization

We develop a closed loop subspace identification method based on stochastic realization theory. Using the preliminary orthogonal decomposition of (Picci and Katayama, 1996b) we show that, under the assumption that the exogenous input is feedback-free and persistently exciting (PE), the identification of closed loop systems is divided into two subproblems: the deterministic identification of the...

متن کامل

Subspace closed loop identification using the integration of MOESP and N4SID methods

Linear identification of time invariant systems operating in closed loop is of special interest for a large number of engineering applications. There are different techniques and methods to carry out this type of identification. For example, modifying the N4SID method, one can derive a closed loop subspace identification method. The same can be done using the MOESP method. Based on them, the MO...

متن کامل

A New Subspace Identification Method for Closed-Loop Systems Using Measurable Disturbance

In this paper, we consider a closed-loop subspace identification problem without using probing inputs; but we assume that there is a measurable disturbance which can be used as a test input for identification. Deterministic and stochastic subsystems are derived by applying the orthogonal decomposition (ORT) of the joint input-output process and realization methods. We develop a new ORTbased clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003